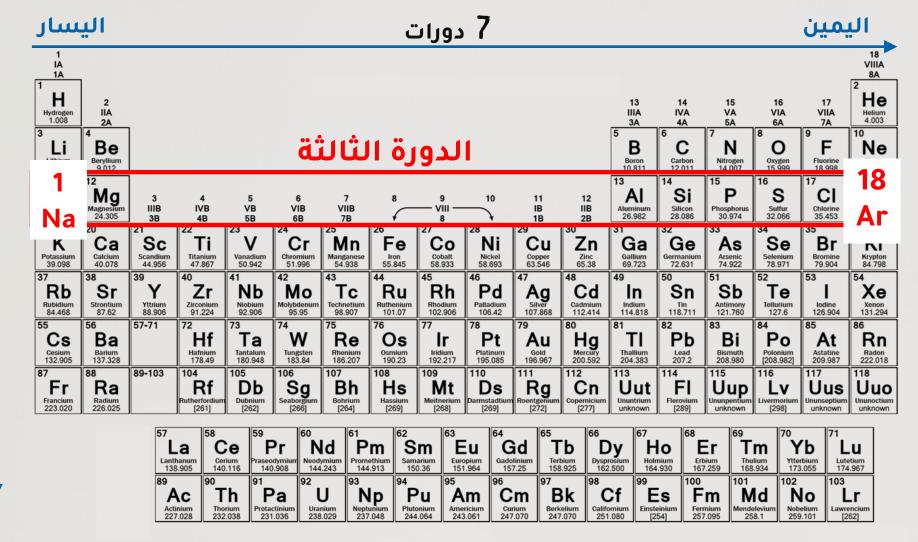

المادة : الكيمياء

الصف: الـحادي عشر الفصل الدراسي: الثاني


الوحدة السادسة :الدورية في خصائص العناصر

تَذَكَّل: الوحدة الأولى: 🗸 طاقة التأين.

✓ وكيف يتغير نصف القطر الذرى ونصف القطر الأيوني.

الوحدة الرابعة: √ أعداد التأكسد

الجدول الدورى للعناصر

الدرس الأول (6-1) : دورية الخصائص الفيزيائية

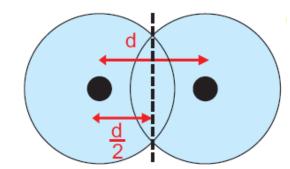
Periodicity : هی

تكرر تدرج الأنماط

الجدول الدوري

كيمياء | الصف: 11 | الفصل الدراسي الثاني

الأعلى


محموعة

الأسفل

[۱] الأنماط الدورية لأنصاف الأقطار الذرية

نصف القطر الذرى التساهمي نصف القطر الذرى "فان دير فال" نصف القطر الفلزى

d: المسافة بين نواتي ذرتين مرتبطتين تساهميًا

نصف القطر الذري $\frac{d}{2}$ (التساهمي)

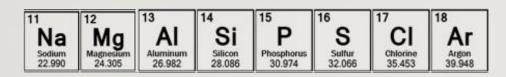
d: المسافة بين نواتي ذرتي فلز متلامستين (أو مرتبطتين برابطة فلزية)

نصف القطر الذري $\frac{d}{2}$ (الفلزي)

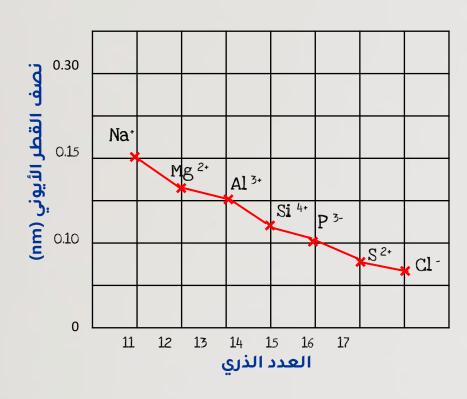
d: المسافة بين نواتي ذرتين متلامستين غير مرتبطتين

نصف القطر الذري $\frac{d}{2}$ (فان دير فال)

 Na
 Mg
 Al
 Si
 P
 Sulfur
 Sulfur
 Cl
 Ar


 Sodium
 24.305
 Aluminum
 Sillicon
 28.086
 Phosphorus
 Sulfur
 Sulfur
 Argon

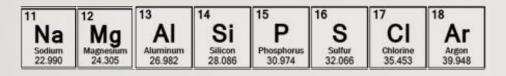
 30.974
 32.066
 35.453
 39.948

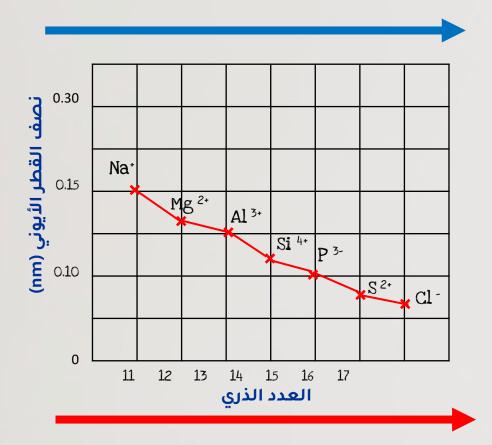

[۱] الأنماط الدورية لأنصاف الأقطار الذرية

نصف القطر الذري (nm)	عناصر الدورة الثالثة
0.157	Na
0.136	Mg
0.125	Al
0.117	Si
0.110	P
0.104	S
0.099	Cl
and some some	Ar

قيم أنصاف الأقطار الذرية لعناصر الدورة الثالثة (1nm=10⁻⁹m)

[۱] الأنماط الدورية لأنصاف الأقطار الذرية


تمثيل بياني لأنصاف الأقطار الذرية لعناصر الدورة الثالثة.


نصف القطر الذري (nm)	عناصر الدورة الثالثة
0.157	Na
0.136	Mg
0.125	Al
0.117	Si
0.110	P
0.104	S
0.099	Cl
and and and	Ar

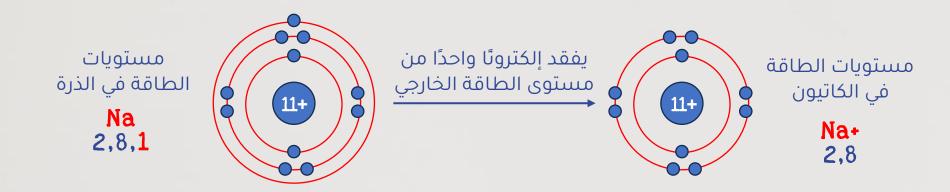
قيم أنصاف الأقطار الذرية لعناصر الدورة الثالثة (1nm=10⁻⁹m)

[۱] الأنماط الدورية لأنصاف الأقطار الذرية

- - بزيادة العدد الذري
 - تزداد عدد البروتونات "داخل النواة"
 - فتزداد الشحنة النووية
 - وبالتالي يزداد قوة جذب النواة لإلكترونات غلاف التكافؤ
 - وتصبح أقرب للنواة
 - وبالتالي يقل نصف القطر
 - في الدورة الثالثة كلما اتجهنا من اليسار إلى اليمين

تمثيل بياني لأنصاف الأقطار الذرية لعناصر الدورة الثالثة.

أي فلز Na كاتيون


[۱] الأنماط الدورية لأنصاف الأقطار الذرية

📜 تکون أيون ذي شحنة موجبة (کاتيون)

يمتلك كاتيون الصوديوم (Na ⁺) 10 إلكترونات فقط مقابل 11 بروتوناً.

لذلك : فإن مستويات الطاقة المشغولة تنجذب بقوة أكبر نحو النواة وهذا ما يجعل حجم الكاتيون

أصغر من حجم ذرته الأصلية. نصف القطر للأيون الموجب أقل من ذرته

لذلك : فإن التجاذب بين مستويات الطاقة المشغولة والنواة يكون أضعف ويكون هناك تنافر أكبر بين الإلكترونات،

هذا ما يجعل حجم الأنيون أكبر من حجم ذرته الأصلية. **نصف القطر للأيون السالب أكبر من ذرته**

انظـر إلى العناصـر الموجـودة في الـدورة الثانيـة في الجـدول الـدوري، وباسـتخدام معلوماتك عن عناصر الدورة الثالثّة.

قارن بین :

نصف القطر الذري لكل من الليثيوم (Li) والفلور (F).

الفلور أصغر في نصف القطر الذرى وذلك لزيادة تأثير البروتون وزيادة الشحنة الموجبة.

الجدول الدوري للعناصر

	,		ؙۣؠ	ىدد الذرّ	<u>ــــ</u> الع	1											
ا ھيدروجين ا				ø.	— الام		H -	┿.	الرمز								He هليوم
3 المتيوم المتيوم	4 Be بريليوم 9			,			1 4	—	ن الذرِّي	الوزر		5 B	6 كربون 12	7 N نيتروجين 14	8 0 اکسچین 16	9 F فلور 19	10 Ne نيون 20
Na مودبيوم 23	12 Mg مفنیسیوم 24											13 Al الومنيوم 27	14 Si سليكون 28	15 P فوسفور 31	ا م کبریت 32	17 21 امالور 35.5	18 Ar ارجون 40
19 K بوتاسيوم 39	20 کالسیوم 40	21 Sc سکاندیوم 45	22 Ti تيتانيوم 48	23 لا فاناديوم 51	24 دروم 52	25 Mn منجنیز 55	Fe مديد 56	27 حوبالت 59	28 Ni نيكل 59	29 دماس الماس 64	30 سائلے 65	31 جاليوم 70	32 جرمانيوم 73	33 As الدائيخ 73	Se سیلینیوم 79	35 Br	36 دربيتون 84
37 Rb 85.5	38 Sr سترونشيوم 88	39 اتيوم 89	20 زرکونیوم 91	41 Nb 1981999 93	42 Mo مولیبدینوم 96	43 Tc تکنیشیوم 98	44 Ru دوٹینیوم 101	45 Rh 103	46 Pd الاديوم 106	⁴⁷ Ag	48 Cd االميوم 112	49 <u>In</u> انديوم 115	50 Sn قصدير 119	51 انتيمون 122	52 Te تيلوريوم 128	53 I	54 Xe پيون 131
55 CS سيزيوم 133	56 Ba هوم 137		72 Hf هافنيوم 178.5	73 Ta تنتالوم 181	74 W تنجستن 184	75 Re هم المجاول 186	76 Os اوزمیوم 190	77 Ir ايريديوم 192	78 Pt بلاتين 195	79 Au بھی 197	Hg	81 اليوم 204	82 Pb صاص 207	83 Bi ^{© 94 M} 209	84 Po بولونيوم	85 At استاتين	86 رادون
87 Fr فرانسيوم	Ra راديوم		104 Rf رذرفورديوم	105 Db دوبنيوم	Sg سيبورجيوم	107 Bh ਨੁਸ਼ਹੁਸ	108 HS هاسيوم	109 M t مایتنرپوم	110 DS دارمشتاتیوم	Rg Rg رونتجينيوم	112 Cn کوہزنیسیوم	113 Nh نيهونيوم	114 Fl فليروفيوم	115 M C موسكوفيوم	116 LV ليفرموريوم	117 Ts تينيسين	0g اوجانیسون

57 لائوم تانوم	1 CE	59 Pr براسيوديميوم 141	60 Nd نیودیمیوم 144	Pm Realized	52 Sm سماريوم 150	63 Eu العوروابيوم 152	64 Gd جادولينيوم 157	55 Tb تربيوم 159	56 Dy ديسېروسيوم 162.5	67 Ho هولميوم 165	68 Er اداموور 167	69 Tm ^{ټوليوم} 169	70 Yb ا ^ت وراموم 173	71 Lu اوتیشیوم 175
89 A منبوم		91 Pa بروتکتینیوم 231	92 ل يورانيوم يورانيوم 238	93 Np نبتونیوم	94 Pu بلوتونيوم	95 Am امریسیوم	Cm	97 Bk برکیلیوم	98 Cf کالیفورنیوم	99 Es أينشتاينيوم	100 F <u>m</u> فرميوم	101 Md مندليفيوم	102 No نوبليوم	103 Lr لورنسيوم

انظـر إلـى العناصـر الموجـودة في الـدورة الثانيـة في الجـدول الـدوري، وباسـتخدام معلوماتك عن عناصر الدورة الثالثة.

قارن بین :

حجم كلاً من ذرة الليثيوم (Li) وأيونها الموجب (Li+)

الليثيوم فلز ويخسر الكترونات بالتالى حجمه يقل

1 H میدروجین 1			ڵؙؽ	ىدد الذرّ سم	— الع — الام	ين 🗕	— H هیدروج	<u></u>	الرمز								He
Li همینیا ا ¹¹ Na	4 Be بريليوه 9 12 Mg مفنيسيوم 24			,			1 <	_ ,	ن الذرِّي	الوزر		5 B 09099 11 13 Al	د رهبوره 12 ا	7 N البتروجين 14	8 O اکسچین 16 S	9 F فلور 19 Cl	Ne (18)
10		²¹ Sc	Ti	²³ V	²⁴ Cr	Mn	²⁶ Fe	²⁷ Co	²⁸ Ni	²⁹ Cu	30 Zn	ألومنيوم 27	سليكون 28 32 Ge	وسفور 31 33 A S	کبریت 32 34 Se	35.5 Br	ارجون 40 36 Kr
لا بوتاسيوم 39	کالسیوم کالسیوم 40	سکاندیوم 45	تيتانيوم 48	فانادیوم 51	کروم 52	1 ۷111 منجنیز 55	حدید 56	كوبالت 59	نيكل نيكل 59	احاس 64	زنك زنك 65	جاليوم 70	جرمانيوم 73	زرنیخ 73	سيلينيوم 79	بروم بروم 08	کریبتون کریبتون 84
37 Rb	Sr سترونشيوم 88	39 Y اتريوم 89	40 درکونیوم 191	Nb	42 Mo موليبدينوم 96	43 Tc تکنیشیوم 98	44 Ru دوٹینیوہ 101	45 Rh هورياوي 103	46 Pd بالاديوم 106	47 Ag	كادميوم 112	إنديوم 115	Sn قصدير 119	51 انتيمون 122	52 Te تيلوريوم 128	53 I 392 127	54 Xe نيمون 131
55 CS سيزيوم 133	56 Ba الماريوم 137		72 Hf هافنیوم 178.5	73 Ta تتتالوم 181	74 W تنجستن 184	75 Re مينيوم 186	76 Os اوزمیوم 190	77 Ir ایریدیوم 192	78 Pt پلاتين 195	79 Au نمب 197	Hg قباني 201	181 اليوم 204	82 Pb سامر 207	Bi 209 209	84 Po بولونيوم	85 At استاتين	86 رادون

الجدول الدورى للعناصر

La لانثانوم	58 Ce سيديوم 140	59 Pr براسيوديميوم 141	60 Nd نیودیمیوم 144	Pm	52 Sm سماريوم 150	63 Eu العوروابيوم 152	64 Gd جادولينيوم 157	55 Tb تربيوم 159	566 دیسبروسیوم 162.5	67 Ho هولميوم 165	68 Er المووم 167	69 Tm ^{توليوم} 169	70 Yb موريوم 173	71 Lu اوتیشیوم 175
Ac أكتينيوم	90 Th موريوم 232	91 Pa بروتکتینیوم 231	92 ل يورانيوم يورانيوم 238	93 Np نبتونیوم	94 Pu بلوتونيوم	95 Am امریسیوم	Cm	97 Bk برکیلیوم	98 Cf کالیفورنیوم	99 Es اینشتاینیوم	100 F <u>m</u> فرميوم	101 Md مندليفيوم	102 No نوبليوم	103 دورنسيوم اورنسيوم

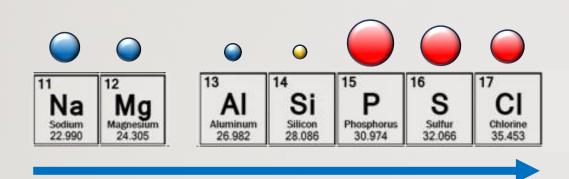
الدرس الأول (6-1) : دورية الخصائص الفيزيائية

Fr Ra

انظـر إلى العناصـر الموجـودة في الـدورة الثانيـة في الجـدول الـدوري، وباسـتخدام معلوماتك عن عناصر الدورة الثالثة.

قارن بین :

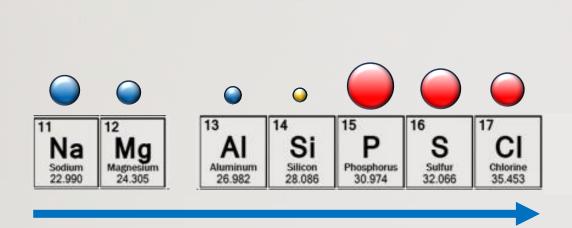
حجم كلاً من ذرة الأكسجين (O) وأيونها السالب (-O)


الأكسجين لافلز أيونه سالب أي يكتسب الكترونات لذلك حجمه

الجدول الدوري للعناصر

ا ا هیدروجین			ێؙؠ	ىدد الذرً مە	— الع — الاب	1	H •	-	الرمز								He
3 لينيوم 7	Be بريليوم			V			1	—	ن الذرِّي	الوزر		5 В	6 کربون 12	7 N نيتروجين 14	8 O اکسجین 16	9 F فلور 19	ا اليون نيون 20
Na موديوس 23	12 Mg مفنیسیوم 24											13 Al الومنيوم 27	14 Si سليكون 28	15 P فوسفور 31	16 گبريت 32	17 كلور 35.5	18 Ar ارجون 40
19 K بوتاسيوم 39	20 کالسیوم 40	21 Sc سکاندیوم 45	22 Ti تيتانيوم 48	23 لا فاناديوم 51	24 دروم 52	25 Mn منجنیر 55	Fe دديد 56	27 حوبالت 59	28 Ni پيکل 59	29 دحاس 64	المالة دول المالة المالااله المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالاي المالة المالة المالة المالة المالة المالة المالة المالة المالاي المالة المالة المالة المالة المالاي المالة المالة المالة المالي المالي المالة المالي المالي المال	31 جاليوم 70	32 جرمانيوم 73	33 As ځولين 73	Se سیلینیوم 79	35 Br	36 <u>Kr</u> کریبتون 84
37 Rb 85.5	38 Sr سترونشيوم 88	39 اتريوم 89	2r زرکونیوم 91	Nb	42 Mo موليبدينوم 96	43 Tc تکنیشیوم 98	44 Ru دوئینپوم 101	45 Rh 103	46 Pd بالاديوم 106	47 Ag المحلة 108	48 کادمیوم 112	In انديوم 115	50 Sn قصدير 119	51 انتيمون 122	52 Te تيلوريوم 128	53 I	54 Xe پيون 131
55 CS سيزيوم 133	56 Ba هوم 137		72 Hf مافنيوم 178.5	73 Ta تتتالوم 181	74 W تنجستن 184	75 Re هم المجاول 186	76 Os اوزمبوم 190	77 Ir الديديوم 192	78 Pt بلاتين 195	79 Au دهب 197	Hg	81 1 اليوم 204	82 رصاص 207	83 Bi ^{©9039} 209	84 Po بولونيوم	85 At استاتين	86 رادون
87 Fr فرانسيوم	Ra داديوم		104 Rf ردرفورديوم	105 Db دوبنيوم	Sg سيبورجيوم	107 Bh ਨੁਸ਼ਹੁਸ	108 HS هاسيوم	109 M t مایتنرپوم	110 DS دارمشتاتیوم	Rg رونتجينيوم	112 Cn کوہرنیسیوم	113 Nh نيهونيوم	114 Fl فليروفيوم	115 M c موسکوفیوم	116 LV ليفرموريوم	117 Ts تينيسين	0g اوجانیسون

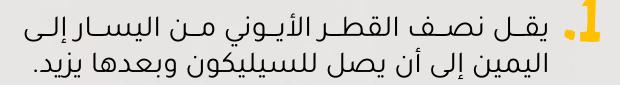
57 La لائثانوم	58 Ce سيديوم 140	59 Pr براسیودیمیوم 141	60 Nd نیودیمیوم 144	Pm Reouther	52 Sm سماريوم 150	63 Eu Paniasas 152	64 Gd جادولينيوم 157	55 Tb تربيوم 159	566 دیسبروسیوم 162.5	67 Ho هولميوم 165	68 Er ۱67	69 Tm نوليوم 169	70 Yb ا ^ت وراموم 173	71 Lu اوتیشیوم 175
89 Ac اکنینیوم	90 Th موريوم 232	91 Pa بروتکتینیوم 231	92 ل يورانيوم يورانيوم 238	93 Np نبتونیوم	94 Pu بلوتونيوم	95 Am امریسیوم	96 Cm	97 Bk برکیلیوم	98 Cf کالیفورنیوم	99 Es اینشتاینیوم	100 F <u>m</u> فرميوم	101 Md مندليفيوم	No انوبليوم	103 Lr لورنسيوم


[2] الأنماط الدورية لأنصاف الأقطار الذرية

نصف القطر الذري (nm)	عناصر الدورة الثالثة
0.095	Na+
0.065	Mg ²⁺
0.050	Al ³⁺
0.041	S i ⁴⁺
0.212	P ³⁻
0.184	S ² -
0.181	Cl-

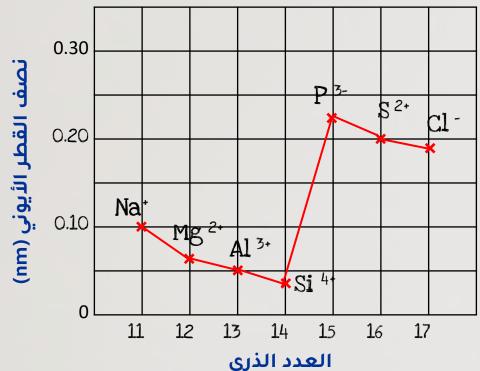
قيم أنصاف الأقطار الذرية لعناصر الدورة الثالثة

[2] الأنماط الدورية لأنصاف الأقطار الذرية



🛂 ماذا نلاحظ

من الشكل المقابل والذي يوضح نصف الأقطار الأيونية لعناصر الدورة الثالثة.



2. كيف نفسر ذلك ؟

الصــوديوم خســر إلكتــرون والمغانيســيوم إلكترونان والألمونيوم ثلاثة.

🥇 الفلزات تخسر إلكترونات في التأين لذلك يقل ححمها.

🕂 - اللافلزات تكتسب إلكترونات في التأين لـذلك يزيد حجمها

[٣] الأنماط الدورية لدرجات الإنصهار:

الأرغون	الكلور	الكبريت	الفوسفور	السيليكون	ال <i>أ</i> لمونيوم	الماغنيسيوم	الصوديوم	عناصر الدورة
(Ar)	(Cl)	(S)	(P)	(Si)	(Al)	(Mg)	(Na)	الثالثة
84	172	392	317	1683	932	932	371	درجة الانصهار

والسبب في ذلك يرجع إلى نوع التركيب والترابط بين الذرات

الأرغون (Ar)	الكلور (Cl)	الكبريت (S)	الفوسفور (P)	السيليكون (Si)	الألمونيوم (Al)	الماغنيسيوم (Mg)	الصوديوم (Na)	عناصر الدورة الثالثة
	تساهمية	تساهمية	تساهمية	تساهمية	فلزية	فلزية	فلزية	نوع الروابط
ذرات منفردة	جزيئي بسيط	جزيئي بسيط	جزيئي بسيط	جزيئي ضخم	فلز ضخم	فلز ضخم	فلز ضخم	التركيب

كما تلاحظ: تزيد قيم الإنصهار من الصوديوم إلى السيليكون وبعدها تنخفض بشكل كبير من الفسـفور

تزيـد قـيم الإنصـهار مـن الصـوديوم إلى السـيليكون وبعـدها تـنخفض بشكل كبير من الفسفور إلى الأرغون.

ما التفسير

عنصر فلزي

تزداد قوة الرابطة الفلزية في الفلزات

بالتالي

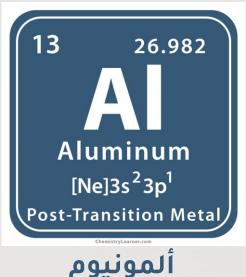
تزداد درجات انصهارها. وتكون درجات انصهار عناصر المجموعة 14 مرتفعة جدا لكونها تمتلك تراكيب تساهمية ضخمة.

عنصر غير فلزي

تمتلك معظم العناصر تراكيب جزيئية بسيطة

بالتالي

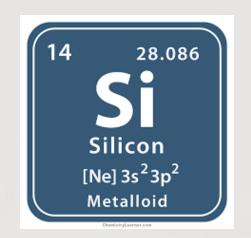
تكـون درجـات انصـهارها منخفضــة نسـبيا. وتمتلك عناصر المجموعة 18 درجات الانصهار الاصغر في كل دورة لانها مكونة من ذرات منفردة.


[٣] الأنماط الدورية والتوصيل الكهربائي:

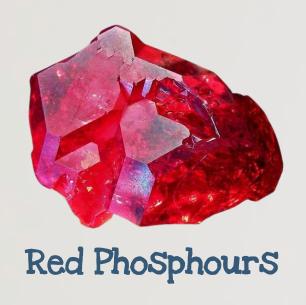
الأرغون	الكلور	الكبريت	الفوسفور	السيليكون	ال <i>أ</i> لمونيوم	الماغنيسيوم	الصوديوم	عناصر الدورة
(Ar)	(Cl)	(S)	(P)	(Si)	(Al)	(Mg)	(Na)	الثالثة
		10 ⁻²³	10 ⁻¹⁷	2×10 ⁻¹⁰	0.382	0.224	0.218	التوصيل الكهربائي

والسبب في ذلك يرجع إلى نوع التركيب والترابط بين الذرات

- يزيد التوصيل الكهربائي كلما اتجهنا من اليسار إلى اليمين في الدورة الواحدة إلى حد الألمونيوم.
 - 2 يبدأ في الإنخفاض عن السيليكون، لماذا؟ لأن السيلكون شبه فلزي.
 - 3 يقل بشكل كبير جدا التوصيل الكهربائي من بداية المواد اللافلزية.



صوديوم أل


- ل الصـوديوم والماغنيسـيوم والأ لومنيـوم، الموجـودة فـي بدايـة الـدورة الثالثـة، عناصـر فلزيـة. ويمكـن وصـف ترابطهـا الفلـزي بأنـه عبـارة عـن أيونـات موجبـة مرتبـة فـي شـبكة ضخمة مرتبطة فيما بينها بوساطة بحر من الإلكترونات غير المتمركزة.
- وتكون هذه الالكترونات حرة الحركة داخل بنية الفلز. وعند تطبيق فرق جهد كهربائي
 على فلز ما، تتحرك الالكترونات غير المتمركزة عبر الفلز نحو الطرف الموجب. وهكذا
 تزداد درجة الانصهار والتوصيل الكهربائي عند الانتقال من الصوديوم إلى الالومنيوم.

سيليكون

- موجود في وسط الدورة الثالثة، أعلى درجة انصهار؛ وذلك بسبب بنيته التساهمية الضخمة. حيث ترتبط كل ذرة سيليكون بذرات السيلكون المجاورة لها بوساطة روابط تساهمية قوية.

2 التوصيل الكهربائي لذرات السيليكون يكون أقل بكثير من الفلزات الموجودة في بداية الدورة، وذلك لعدم وجود إلكترونات غير متمركزة حرة الحركة تتنقل داخل بنيتها. ويصنف السيليكون بأنه شبه فلز.

Sulphur

Carbon

- بُعد العناصر الموجودة إلى يمين عنصرالسيليكون جميعها عناصر لافلزية. وهي تكون في شكل جزيئات صغيرة

2 وعلى الرغم من أن الروابط التساهمية داخل كل جزيء تكون قوية، الا أنه لا يوجد سوى قوى ثنائي قطب لحظي- ثنائي قطب مستحث ضعيفة بين جزيئاتها. لذلك، لا يلزم الكثير من الطاقة لكسر هذه القوى بين-الجزيئات الضعيفة وصهر العناصر.

- السيليكون. يمتلك الكبريت درجة انصهار أقل من السيليكون.

- الكبريت درجة انصهار أكبر من الكلور. عن الكلور.

- الفوسفور على الله عنيسيوم موصلا كهربائيا أفضل من الفوسفور على الفوسفور على الفوسفور الفوسفور الفوسفور الفوسفور

