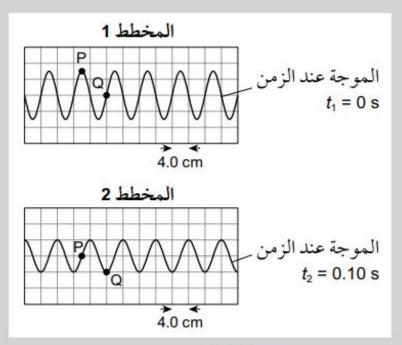


فيزياء الثاني عشر اعداد


ر. مرول التكيلي

حل أسئلة الموجات

نهاية الوحدة السادسة كتاب النشاط

ا. يُظهر الشكل ٦-١١ رسمَين تخطيطيَّين للموجة المسافرة نفسها تتحرك من اليسار إلى اليمين على سلك مشدود في زمنين مختلفين. يوضح المخطط 1 الموجة عند الزمن ($t_1 = 0$ s)، ويوضح المخطط 2 الموجة عند الزمن ($t_2 = 0.10$ s).

الشكل ٦-١١

سُجِّلت النقطتان P و Q على السلك حيث تظهران في كِلا المخططين. أ. حدد طول الموجة.

ب. احسب سرعة الموجة، مع ذكر أي افتراض سوف تقوم به.

ج. احسب تردد الموجة.

$$\lambda = 4.0x2 = 8.0cm$$
 أ)تشغل الموجة مربعين

 $T=0.1\divrac{1}{4}=0.4s$ بمقدار $rac{1}{4}$ موجة اذن الزمن الدوري يساوي P بمقدار النقطة P بمقدار باخلال زمن

$$v = \frac{\lambda}{T} = \frac{8.0}{0.4} = 20 \, cm \, s^{-1}$$

ر والمارانكيدي
$$f = \frac{1}{T} = \frac{1}{0.4} = 2.5 Hz$$
 (ج

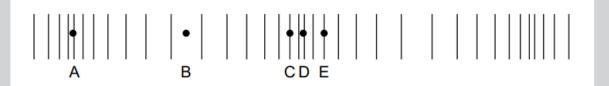
- د. قارن سعة الموجة عند P و Q على المخطط نفسه.
 - ه. احسب فرق الطور بين اهتزازات P و Q.
- و. عند الزمن (t_1) ، تكون سعة اهتزاز P تساوي (6.0 cm) وعند الزمن (t_2) تصبح السعة (4.0 cm). احسب هذه النسبة:
 - (t_2) عند الموجة عند (t_1) : شدة الموجة عند

د) في نفس المخطط يكون لهما نفس السعة .

هـ) انزاحت الموجة من المخطط أ الى المخطط ب بقدار
$$\frac{3}{4}$$
 موجة $\phi=\frac{x}{\lambda}x\ 360^\circ=\frac{3}{4}x\ 360^\circ=270^\circ$

$$\frac{I_1}{I_2} = \frac{A_1^2}{A_2^2} = \frac{6.0^2}{4.0^2} = \frac{9}{4} = 2.25 \quad (9)$$

١٠ يمكن أن تكون الموجات طولية أو مستعرضة.


١. اذكر اختلافًا واحدًا وتشابهًا واحدًا بين هذَين النوعَين.

٢. أعطِ مثالا واحدًا على كل نوع منهما.

(أ

نوع الموجات	الموجات الطولية	الموجات المستعرضة
الإختلاف	الاهتزاز يكون موازي لحركة انتشار الموجة	الاهتزاز يكون عمودي لحركة انتشار الموجة
التشابه	-نقل الطاقة دون نقل جزيئات الوسط -ينتج بسبب اهتزاز جزيئات الوسط	-نقل الطاقة دون نقل جزيئات الوسط -ينتج بسبب اهتزاز جزيئات الوسط
مثال	-الموجات الصوتية -بعض الموجات الزلزالية -الموجات الزنبركية	-الموجات الكهرومغناطيسية -الموجات المتكونة في الحبل (. فالله (التُكيلي -موجات الماء

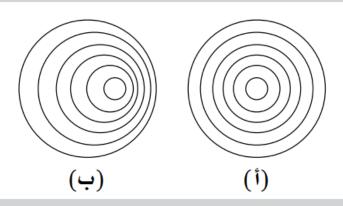
ب. يوضح الشكل ٦-١٢ موجة طولية بتردد (3.0 Hz).

الشكل ٦-١٢

النقاط A و B و C و D و E هي نقاط تنتقل الموجة عبرها.

- ١. ما المقصود بالتردد؟
- ٢. اذكر النقطتين اللتين يفصل بينهما طول موجى واحد.
- ٣. المسافة بين النقطتين A و B تساوي (14.0 cm). احسب سرعة الموجة.
- ٤. احسب فرق الطور بين اهتزاز الموجة عند النقطة A و B (احسب أولًا جزء طول الموجة الموجود بين A و B).

ب) 1- التردد: عدد الأطول الموجية الكاملة التي تمر بنقطة في زمن (وحدة زمن)


A D -2 (ب

$$\lambda = 2x14.0 = 28.0cm$$
 ب) $AB_{.}$ -3 بن مثل نصف موجة اذن $V = \lambda f = 28.0x3.0 = 84~cm~s^{-1}$

$$\phi = \frac{x}{\lambda} x 360^\circ = \frac{14.0}{28.0} x 360^\circ = 180^\circ$$
 -4 (ب

٣. أ. ما المقصود بتأثير دوبلر في الصوت؟

ب. يوضح الشكل ٦-١٣ (أ) جبهات موجة Wavefronts تنتشر من مصدر ثابت للصوت في مركز الدوائر؛ أمّا في الشكل ٦-١٣ (ب) فتظهر جبهات الموجة نفسها من مصدر صوت يتحرك إلى اليمين بسرعة (20 m s⁻¹).

الشكل ٦-١٣

المسافة بين جبهات الموجة في الشكل ٦-١٣ (أ) إلى اليمين تساوي طول الموجة للصوت. تردد الصوت المنبعث من المصدر تساوي (200 Hz). سرعة الصوت في الهواء (340 m s⁻¹). احسب:

- ١. الطول الموجى للصوت.
- ٢. الزمن (t) لاهتزازة كاملة للصوت.

أ) تأثير دوبلر في الصوت: هو التغير في التردد او طول الموجة للملاحظ لموجة عندما يتحرك مصدر الموجة باتجاه المراقب أو بعيدا عنه.

$$\lambda = \frac{v}{f} = \frac{340}{200} = 1.7m$$
 -1 (\dot{y}

-2 (ب

$$t = T = \frac{1}{f} = \frac{1}{200} = 0.005 \, s$$

ر المل والتكيدي

- 7. المسافة التي يقطعها مصدر الصوت الذي يتحرك بسرعة (t) في الزمن (t).
- المسافة القصوى والدنيا بين جبهات الموجة في الشكل ٦-١٣ (ب)
 (وهي تساوي القيمة القصوى والدنيا لطول الموجات للصوت الملاحظ).
 - ٥. التردد الذي يسمعه شخصان، أحدهما يقف إلى يمين مصدر الصوت المتحرك والآخر إلى يساره.

$$s = v.t = 20x0.005 = 0.10 m - 3 (\hookrightarrow$$

ب) 4-

 $\lambda = 1.7 + 0.1 = 1.8 \, m$ الطول الموجي الأقصى $\lambda = 1.7 - 0.1 = 1.6 \, m$ الطول الموجى الأدنى

ب- 5- يمين مصدر الصوت
$$f_0=\left(rac{v}{v-v_s}
ight)f_s=\left(rac{340}{340-20}
ight)200=212.5~Hz$$
 الأقصى $f_0=\left(rac{v}{v+v_s}
ight)f_s=\left(rac{340}{340+20}
ight)200=188.9~Hz$ يسار مصدر الصوت $f_0=\left(rac{v}{v+v_s}
ight)f_s=\left(rac{340}{340+20}
ight)200=188.9~Hz$

